2020年八上数学:图形的性质_三角形_等腰直角三角形练习题
~~第1题~~
(2018点军.八上期中) 如图,已知△ ABC中,AB=AC,∠BAC=90°,直角∠ EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形; ③2S四边形AEPF=S△ ABC; ④BE+CF=EF.当∠ EPF在△ABC内绕顶点P旋转时(点E与A,B重合).上述结论中始终正确的有( )
A . 1个 B . 2个 C . 3个 D . 4个
考点: 等腰直角三角形;全等三角形的判定与性质;答案
~~第2题~~
A .
B .
C .
D . 5



考点: 等腰直角三角形;全等三角形的判定与性质;勾股定理;答案
~~第3题~~
(2020芜湖.八上期中) 如图,在
中,
于D , 且
,以AB为底边作等腰直角三角形ABE , 连接ED、EC , 延长CE交AD于点F , 下列结论:①
;②
;③
;④
,其中正确的有( ).







A . ①② B . ①③ C . ①②③ D . ①②③④
考点: 等腰直角三角形;全等三角形的判定与性质;答案
~~第4题~~
(2020九龙坡.八上期中) 如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有( )个
A . 1个 B . 2个 C . 3个 D . 4个
考点: 等腰直角三角形;全等三角形的判定与性质;答案
~~第5题~~
(2020武汉.八上期末) 如图,点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③仅有当∠DAP=45°或67.5°时,△APD是等腰三角形;④∠PFE=∠BAP:⑤
PD=EC.其中有正确有( )个.

A . 2 B . 3 C . 4 D . 5
考点: 等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定;正方形的性质;答案
~~第6题~~
(2020长葛.八上期末) 如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为( )
A . 2 B . 3 C . 4 D . 5
~~第7题~~
(2019宁波.八上期末) 将一个有45°角的三角板的直角顶点C放在一张宽为5cm的纸带边沿上,另一个顶点B在纸带的另一边沿上,测得∠DBC=30°,则三角板的最大边的长为( )
A . 5cm B . 10cm C .
D .


考点: 平行线的性质;等腰直角三角形;含30度角的直角三角形;勾股定理;答案
~~第8题~~
(2019温州.八上期末) 如图,在等腰△OAB中,∠OAB=90°,点A在x轴正半轴上,点B在第一象限,以AB为斜边向右侧作等腰Rt△ABC,则直线OC的函数表达式为( )
A .
B .
C .
D .




考点: 反比例函数图象上点的坐标特征;等腰直角三角形;答案
~~第9题~~
(2019庆元.八上期末) 如图,在等腰直角△ABC中,腰长AB=4,点D在CA的延长线上,∠BDA=30°,则△ABD的面积是( )
A .
B .
C .
D .




考点: 等腰直角三角形;含30度角的直角三角形;勾股定理;答案
~~第10题~~
(2019秀洲.八上期末) 如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有( )
①△ABC是等腰三角形;②BF=AC;③BH:BD:BC=1: :
;④GE2+CE2=BG2 .
A . 1个 B . 2个 C . 3个 D . 4个
考点: 等腰直角三角形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理;答案
2020年八上数学:图形的性质_三角形_等腰直角三角形练习题答案
1.答案:C
2.答案:C
3.答案:D
4.答案:B
5.答案:C
6.答案:A
7.答案:C
8.答案:D
9.答案:A
10.答案:C