历年试卷、真题答案和热门考点已上线,为中小学辅导提供了丰富的资料,也为每日一学、每日一练提供了坚实的基础。

浙江省宁波市江北区2015-2016学年九年级上学期期末数学试卷

一、选择题(浙江省宁波市江北区2015-2016学年九年级上学期期末数学试卷)

1. 若3x=2y,则x:y的值为(   )
A . 2:3 B . 3:2 C . 3:5 D . 2:5
2. 如果∠A是锐角,且sinA=cosA,那么∠A=(   )
A . 30° B . 45° C . 60° D . 90°
3. 圆锥的母线长为4,侧面积为12π,则底面半径为(   )
A . 6 B . 5 C . 4 D . 3
4. 一个袋子中有7只黑球,6只黄球,5只白球,一次性取出12只球,其中出现黑球是(   )
A . 不可能事件 B . 必然事件 C . 随机事件 D . 以上说法均不对
5. 下列函数中有最小值的是(   )
A . y=2x﹣1 B . y=﹣ C . y=2x2+3x D . y=﹣x2+1
6. 如果用 表示1个立方体,用 表示两个立方体叠加,用 表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是(   )

A . B . C . D .
7. ⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为(   )
A . 6 B . 5 C . 4 D . 3
8. 下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是(   )
A . 4 B . 3 C . 2 D . 1
9. 四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L,K,C的投影中,与字母N属同一种投影的有(   )

A . L,K B . C C . K D . L,K,C
10. 如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有(   )

A . 2对 B . 3对 C . 4对 D . 5对
11. 如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足 = ,连接AF并延长交⊙0于点E.连接AD,DE,若CF=2,AF=3.给出下列结论:

①△ADF∽△AED;②FG=2;③tan∠E= ;④SDEF=4

其中正确的是(   )

A . ①②④ B . ①②③ C . ②③④ D . ①③④
12. 如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2 ,则a的值为(   )

A . 4 B . 2+ C . D .

二、填空题(浙江省宁波市江北区2015-2016学年九年级上学期期末数学试卷)

13. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:

种子粒数

100

400

800

1000

2000

5000

发芽种子粒数

85

298

652

793

1604

4005

发芽频率

0.850

0.745

0.815

0.793

0.802

0.801

根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.1).

14. 大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为________ cm.

15. 如图,六个正方形组成一个矩形,A,B,C均在格点上,则∠ABC的正切值为________.

16. 如图,将一段12cm长的管道竖直置于地面,并在上面放置一个半径为5cm的小球,放置完毕以后小球顶端距离地面20cm,则该管道的直径AB为________.

17. 如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为________ cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

18. 如图,过y轴上一点P(0,1)作平行于x轴的直线PB,分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于A1 , B1两点,过点B1作y轴的平行线交y1的图象于点A2 , 再过A2作直线A2B2∥x轴,交y2的图象于点B2 , 依次进行下去,连接A1A2 , B1B2 , A2A3 , B2B3 , …,记△A2A1B1的面积为S1 , △A2B1B2的面积为S2 , △A3A2B2的面积为S3 , △A3B2B3的面积为S4 , …则S2016=________

三、解答题(浙江省宁波市江北区2015-2016学年九年级上学期期末数学试卷)

19. 计算:2cos30°+| ﹣2|+(2016﹣π)0﹣( 1
20. 如图,△ABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,求S四边形DFGE:S四边形FBCG的值.

21. 如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)

22. 如图,PB切⊙O于点B,联结PO并延长交⊙O于点E,过点B作BA⊥PE交⊙O于点A,联结AP,AE.

(1) 求证:PA是⊙O的切线;
(2) 如果OD=3,tan∠AEP= ,求⊙O的半径.
23. 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.
(1) 若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?
(2) 若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.
24. 某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).
(1) 求y与x之间的函数关系式;
(2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3) 若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?
25. 由若干边长为1的小正方形拼成一系列“L”形图案(如图1).

(1)

当“L”形由7个正方形组成时,其周长为

(2)

如图2,过格点D作直线EF,分别交AB,AC于点E,F.

①试说明AE•AF=AE+AF;

②若“L”形由n个正方形组成时,EF将“L”形分割开,直线上方的面积为整个“L”形面积的一半,试求n的取值范围以及此时线段EF的长.

26. 已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tan∠ABO= ,以线段BC为直径作⊙M交直线AB于点D,过点B作直线l∥AC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和⊙M的另一个交点分别是E,F.

(1)

求B点坐标;

(2)

用含m的式子表示抛物线的对称轴;

(3)

线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.

(4)

是否存在点C(m,0),使得BD= AB?若存在,求出此时m的值;若不存在,说明理由.