历年试卷、真题答案和热门考点已上线,为中小学辅导提供了丰富的资料,也为每日一学、每日一练提供了坚实的基础。

山西省阳泉市盂县山西阳泉2016-2017学年九年级上学期数学期末考试试卷

一、单选题(山西省阳泉市盂县山西阳泉2016-2017学年九年级上学期数学期末考试试卷)

1. 点M(1,-2)关于原点对称的点的坐标是(   )
A . (-1,2) B . (1,2) C . (-1,-2) D . (-2,1)
2. 若反比例函数y= (k≠0)的图象经过点P(-2,3),则该函数的图象不经过的点是(   )
A . (3,-2) B . (1,-6) C . (-1,6) D . (-1,-6)
3. 如图的两个四边形相似,则∠α的度数是(  )

A . 87° B . 60° C . 75° D . 120°
4. 已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为(   )
A . -1 B . 0 C . 1 D . -2
5. 如果一个扇形的半径是1,弧长是 ,那么此扇形的圆心角的大小为(   )
A . 30° B . 45° C . 60° D . 90°
6. 在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为(   )
A . 7sin35° B . 7cos35° C . 7tan35° D .
7. 对于反比例函数y= ,当x≤-6时,y的取值范围是(   )
A . y≥-1 B . y≤-1 C . -1≤y<0 D . y≥1
8. 如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD= ,BC=4,则AC的长为(   )

A . 1 B . C . 3 D .
9. 在研究相似问题时,甲、乙同学的观点如下:

甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.

乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.

对于两人的观点,下列说法正确的是(  )

 

A . 甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对
10. 二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:

x

-3

-2

-1

0

1

y

-6

0

4

6

6

给出下列说法:

①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为(    )

A . 4 B . 3 C . 2 D . 1

二、填空题(山西省阳泉市盂县山西阳泉2016-2017学年九年级上学期数学期末考试试卷)

11. 已知四条线段满足a= ,将它改写成为比例式为________(写出你认为正确的一个).
12. 若点P(2,6)、点Q(-3,b)都是反比例函数y= (k≠0)图象上的点,则b=________.
13. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为________.

14. 已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为________.
15. 如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC= ,∠B=60°,则CD的长为________.

16. 下列事件:

①随意翻到一本书的某页,这页的页码是奇数;

②测得某天的最高气温是100℃;

③掷一次骰子,向上一面的数字是2;

④度量四边形的内角和,结果是360°.

其中是随机事件的是 ________.(填序号)

三、解答题(山西省阳泉市盂县山西阳泉2016-2017学年九年级上学期数学期末考试试卷)

17.

(1) 解方程3x(x-2)=2(2-x).
(2) 计算:2cos60°-3tan30°+2tan45°.
18. 如图,△ABC在方格纸中

(1) 请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
(2) 以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;
(3) 计算△A′B′C′的面积S.
19. 如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.

(1) 填空:∠ABC=,BC=
(2) 判断△ABC与△DEF是否相似?并证明你的结论.
20. 某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.

(1) 试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;
(2) 某顾客参加一次抽奖,能获得返还现金的概率是多少?
21. 如图,一游客在某城市旅游期间,沿街步行前往著名的电视塔观光,他在A处望塔顶C的仰角为30°,继续前行250m后到达B处,此时望塔顶的仰角为45°.已知这位游客的眼睛到地面的距离约为170cm,假若游客所走路线直达电视塔底.请你计算这座电视塔大约有多高?(结果保留整数. ≈1.7, ≈1.4;E,F分别是两次测量时游客眼睛所在的位置.)

22. 已知反比例函数y= (m为常数)的图象在一、三象限.

(1) 求m的取值范围;
(2) 如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(-2,0).

①求出函数解析式;

②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为;若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为个.

23. 如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB如图,AB是

⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.

(1) 判断CD与⊙O的位置关系,并证明你的结论;
(2) 若E是弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.
24. 如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.

(1) 以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2) 抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;
(3) 点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长.

参考答案(山西省阳泉市盂县山西阳泉2016-2017学年九年级上学期数学期末考试试卷)

1.
【答案】
2.
【答案】
3.
【答案】
4.
【答案】
5.
【答案】
6.
【答案】
7.
【答案】
8.
【答案】
9.
【答案】
10.
【答案】
11.
【答案】
12.
【答案】
13.
【答案】
14.
【答案】
15.
【答案】
16.
【答案】
17.
【答案】
【答案】
18.
【答案】
【答案】
【答案】
19.
【答案】
【答案】
20.
【答案】
【答案】
21.
【答案】
22.
【答案】
【答案】
23.
【答案】
【答案】
24.
【答案】
【答案】
【答案】