Warning: Error while sending QUERY packet. PID=28747 in /opt/lampp/htdocs/k12_wordpress/wp-includes/wp-db.php on line 2007
河南省信阳市息县2020届九年级上学期数学期末考试试卷
历年试卷、真题答案和热门考点已上线,为中小学辅导提供了丰富的资料,也为每日一学、每日一练提供了坚实的基础。

河南省信阳市息县2020届九年级上学期数学期末考试试卷

一、单选题 (河南省信阳市息县2020届九年级上学期数学期末考试试卷)

1. 下列图形中,既是中心对称图形又是轴对称图形的是(  )

2. 下列事件中,为必然事件的是(   )
A . 抛掷10枚质地均匀的硬币,5枚正面朝上 B . 某种彩票的中奖概率为 ,那么买100张这种彩票会有10张中奖 C . 抛掷一枚质地均匀的骰子,朝上一面的数字不大于6 D . 打开电视机,正在播放戏曲节目
3. 不解方程,则一元二次方程 的根的情况是(   )
A . 有两个相等的实数根 B . 没有实数根 C . 有两个不相等的实数根 D . 以上都不对
4. 若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是(   )
A . y=2(x﹣1)2﹣3 B . y=2(x﹣1)2+3 C . y=2(x+1)2﹣3 D . y=2(x+1)2+3
5. 如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为(   )

A . 110° B . 140° C . 35° D . 130°
6. 如图,已知 点是反比例函数 的图象上一点, 轴于 ,且 的面积为3,则 的值为(   )

图片_x0020_1388485144

A . 4 B . 5 C . 6 D . 7
7. 在正方形网格中△ABC的位置如图所示,则cos∠B的值为(    )

图片_x0020_100001

A . B . C . D .
8. 向上发射一枚炮弹,经 秒后的高度为 ,且时间与高度的关系式为 ,若此时炮弹在第 秒与第 秒时的高度相等,则在下列哪一个时间的高度是最高的(       )
A . B . C . D .
9. 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为(   )

图片_x0020_1637538652

A . 4 B . 4 C . 6 D . 4
10. 如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有(  )

图片_x0020_2124118108

A . 4个 B . 3个 C . 2个 D . 1个

二、填空题 (河南省信阳市息县2020届九年级上学期数学期末考试试卷)

11. 已知关于x的一元二次方程(a-1)x2-x + a2-1=0的一个根是0,那么a的值为________.
12. 把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为________.
13. 若点 在反比例函数 的图象上,则 ________ .(填“>”“<”或“=”)
14. 如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为 ,则 )的值为________.

图片_x0020_100018

15. 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.

图片_x0020_1761880953

三、解答题 (河南省信阳市息县2020届九年级上学期数学期末考试试卷)

16. 体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另个人记为踢一次.如果从小强开始踢,请你用列表法或画树状图法解决下列问题:
(1) 经过两次踢球后,足球踢到小华处的概率是多少?
(2) 经过三次踢球后,足球踢回到小强处的概率是多少?
17. 如图,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.

图片_x0020_146106910

(1) 画出旋转后的△A1OB1,点A1的坐标为;;
(2) 在旋转过程中,点B经过的路径的长.
18. 如图,反比例函数 的图象与一次函数 的图象相交于点 和点 .

图片_x0020_100025

(1) 求反比例函数的解析式和点 的坐标;
(2) 连接 ,求 的面积.
(3) 结合图象,请直接写出使反比例函数值小于一次函数值的自变量 的取值范围.
19. 如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛 间的距离.借助人工湖旁的小山,某同学从山顶 处测得观看湖中小岛 的俯角为 ,观看湖中小岛 的俯角为 .已知小山 的高为180米,求小岛 间的距离.

图片_x0020_100027

20. 如图,已知直线 交⊙ 两点, 是⊙ 的直径,点 为⊙ 上一点,且 平分 ,过点 .

 图片_x0020_226595357

)求证: 为⊙ 的切线.

21. 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调査发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1) 求平均每天销售量 (箱)与销售价 (元/箱)之间的函数关系式.
(2) 求该批发商平均每天的销售利润 (元)与销售价 (元/箱)之间的函数关系式.
(3) 当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
22. 如图①,在 中, .

图片_x0020_100030

(1) 的数量关系是: ; .
(2) 把图①中的 绕点 旋转一定的角度,得到如图②所示的图形.

图片_x0020_100031

①求证: .

②若延长 于点 ,则 的数量关系是什么?并说明理由.

(3) 若 ,把图①中的 绕点 顺时针旋转 ,直接写出 长度的取值范围.
23. 如图,在平面直角坐标系中,抛物线 轴于点 ,交 轴正半轴于点 ,与过 点的直线相交于另一点 ,过点 轴,垂足为 .

图片_x0020_100032

(1) 求抛物线的解析式.
(2) 点 轴正半轴上的一个动点,过点 轴,交直线 于点 ,交抛物线于点 .

①若点 在线段 上(不与点 重合),连接 ,求 面积的最大值.

②设 的长为 ,是否存在 ,使以点 为顶点的四边形是平行四边形?若存在,求出 的值;若不存在,请说明理由.