如图,在中,,,,平分交于,于点.
——来源于“吉林省长春市宽城区吉林2018-2019学年八年级上学期数学期末考试试卷”真题答案
【真题】 (1) 求证:
垂直平分
.


(2) 求
的长

(3) 求
的长.
【答案】
【答案】

【答案】

【答案】
【解析】
【解析】

考点分析
据专家权威分析,试题“如图,在中,,,,平分交于,于点.”主要考察了你对 全等三角形的判定与性质;等腰三角形的性质;勾股定理; 等知识点的理解和应用。举一反三
~~第1题~~ (2020长兴.九上期末) 如图,四边形ABCE内接于⊙O,AB是⊙O的直径,点D在AB的延长线上,延长AE交BC的延长线于点F,点C是BF的中点,∠BCD=∠CAE
(1) 求证:CD是⊙O的切线;
(2) 求证:△CEF是等腰三角形;
(3) 求证:△CEF是等腰三角形;
(4) 若BD=1,CD=2,求 cos∠CBA的值及EF的长。
(5) 若BD=1,CD=2,求 cos∠CBA的值及EF的长。
~~第2题~~ (2020长兴.九上期末) 如图,四边形ABCE内接于⊙O,AB是⊙O的直径,点D在AB的延长线上,延长AE交BC的延长线于点F,点C是BF的中点,∠BCD=∠CAE
(1) 求证:CD是⊙O的切线;
(2) 求证:△CEF是等腰三角形;
(3) 求证:△CEF是等腰三角形;
(4) 若BD=1,CD=2,求 cos∠CBA的值及EF的长。
(5) 若BD=1,CD=2,求 cos∠CBA的值及EF的长。
~~第3题~~ (1) 求该抛物线的解析式;
(2) 求该抛物线的解析式;
(3) 若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;
(4) 若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;
(5) 在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.
(6) 在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.
~~第4题~~ (2020鞍山.九上期末) 如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.
(1) 求证:GD=EG.
(2) 求证:GD=EG.
(3) 若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.
(4) 若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.
(5) 在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.
(6) 在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.
~~第5题~~ (2020鞍山.九上期末) 如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.
(1) 求证:AC为⊙O切线.
(2) 求证:AC为⊙O切线.
(3) 若AB=5,DF=4,求⊙O半径长.
(4) 若AB=5,DF=4,求⊙O半径长.