历年试卷、真题答案和热门考点已上线,为中小学辅导提供了丰富的资料,也为每日一学、每日一练提供了坚实的基础。

如图1,△ABC、△DCE均为等边三角形,当B、C、E三点在同一条直线上时,连接BD、AE交于点F,易证:△ACE≌△BCD.聪明的小明将△DCE绕点C旋转的过程中发现了一些不变的结论,让我们一起开启小明的探索之旅!

——来源于“浙江省宁波市鄞州区实验中学2019-2020学年八年级上学期期中数学试卷”

真题答案

【真题】
(2020鄞州.八上期中) 如图1,△ABC、△DCE均为等边三角形,当B、C、E三点在同一条直线上时,连接BD、AE交于点F,易证:△ACE≌△BCD.聪明的小明将△DCE绕点C旋转的过程中发现了一些不变的结论,让我们一起开启小明的探索之旅!

(1) (探究一)如图2,当B、C、E三点不在同一条直线上时,小明发现∠BFE的大小没有发生变化,请你帮他求出∠BFE的度数.

(2) (探究二)阅读材料:在平时的练习中,我们曾探究得到这样一个正确的结论:两个全等三角形的对应边上的高相等.例如:如图3,如果△ABC≌△A’B’C’,AD、A’D’分别是△ABC、△A’B’C’的边BC、B’C’上的高,那么容易证明AD=A’D’.小明带着这样的思考又有了新的发现:如图4,若连接CF,则CF平分∠BFE,请你帮他说明理由.

(3) (探究三)在探究二的基础上,小明又进一步研究发现,线段AF、BF、CF之间还存在一定的数量关系,请你写出它们之间的关系,并说明理由.
【答案】
【答案】
【答案】
【答案】
【解析】
【解析】

考点分析

        据专家权威分析,试题“如图1,△ABC、△DCE均为等边三角形,当B、C、E三点在同一条直线上时,连接BD、AE交于点F,易证:△ACE≌△BCD.聪明的小明将△DCE绕点C旋转的过程中发现了一些不变的结论,让我们一起开启小明的探索之旅!”主要考察了你对 全等三角形的判定与性质;等边三角形的性质; 等知识点的理解和应用。

举一反三

        ~~第1题~~
(2020长兴.九上期末) 如图,四边形ABCE内接于⊙O,AB是⊙O的直径,点D在AB的延长线上,延长AE交BC的延长线于点F,点C是BF的中点,∠BCD=∠CAE


(1) 求证:CD是⊙O的切线;
(2) 求证:△CEF是等腰三角形;
(3) 求证:△CEF是等腰三角形;
(4) 若BD=1,CD=2,求 cos∠CBA的值及EF的长。
(5) 若BD=1,CD=2,求 cos∠CBA的值及EF的长。
~~第2题~~
(2020郑州.九上期末) 已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1 , h2 , h3 , △ABC的高为h.

图片_x0020_100017

(1) 若点P在一边BC上,如图①,此时h3=0,求证:h1+h2+h3=h;
(2) 当点P在△ABC内,如图②,以及点P在△ABC外,如图③,这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.
~~第3题~~
(2020息.九上期末) 如图①,在 中, .

图片_x0020_100030

(1) 的数量关系是: ; .
(2) 把图①中的 绕点 旋转一定的角度,得到如图②所示的图形.

图片_x0020_100031

①求证: .

②若延长 于点 ,则 的数量关系是什么?并说明理由.

(3) 若 ,把图①中的 绕点 顺时针旋转 ,直接写出 长度的取值范围.
~~第4题~~
(1) 一节数学课上,老师提出了这样一个问题:如图1,点P是等腰Rt△ABC内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察,分析,思考,形成了如下思路:

思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连结P′P,求出∠APB的度数;

思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连结P′P,求出∠APB的度数。

请参考小明的思路,任选一种写出完整的解答过程。

(2) 一节数学课上,老师提出了这样一个问题:如图1,点P是等腰Rt△ABC内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察,分析,思考,形成了如下思路:

思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连结P′P,求出∠APB的度数;

思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连结P′P,求出∠APB的度数。

请参考小明的思路,任选一种写出完整的解答过程。

(3) 【类比探究】如图,若点M是等腰Rt△ABC外一点,MA=3,MB=1,MC= ,请直接写出∠AMB的度数。
(4) 【类比探究】如图,若点M是等腰Rt△ABC外一点,MA=3,MB=1,MC= ,请直接写出∠AMB的度数。
~~第5题~~
(2020长兴.八上期末) 如图,已知AC平分∠BAD,CE⊥AB于点E,CF⊥AD于点F,且BC=CD。


(1) 求证:△BCE≌△DCF
(2) 求证:△BCE≌△DCF
(3) 若AB=21,AD=9,BC=CD=10,求AC的长。
(4) 若AB=21,AD=9,BC=CD=10,求AC的长。

巩固练习

        与该题相似的试题还有: