图形的性质_三角形_三角形的面积
- 1. 如图,点 是反比例函数 的图象上任意一点,过点 作 轴,垂足为 .若 的面积等于2,则 的值等于( ).
- 2. 如图, 为 的直径, 是半圆 的三等分点,过点 作 延长线的垂线 ,垂足为 .
- 3. 如图,在 中, ,以点 为圆心,适当长为半径画弧,分别交 于点 ,再分别以点 为圆心,大于 为半径画弧,两弧交于点 ,作射线 交边 于点 ,则 的面积是( )
- 4. 如图, 中, ,以 为直径的⊙ 分别与 , 交于点 ,连接 ,过点 作 于点 .若 , ,则阴影部分的面积是________.
- 5. 如图,直线 与x轴、y轴分别交于A,B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是( )
- 6. 如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2 , 则△PEF的面积(阴影部分)是________cm2 .
- 7. 阅读下列材料: 如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到: 证明:过点A作AD⊥BC,垂足为D. 在Rt△ABD中, ∴ ∴ 同理: ∴
- 8. 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.
- 9. 如图,点A在反比例函数y= (x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
- 10. 如图,点A在双曲线y= (x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y= (x>0)经过点C,则k=________.
- 11. 如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③ ﹣1;④
- 12. 如图,正比例函数y1=k1x的图象与反比例函数y2= (x>0)的图象相交于点A( ,2 ),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是________.
- 13. 在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.
- 14. 如图,在平面直角坐标系中,等边 和菱形 的边 都在 轴上,点 在 边上, ,反比例函数 的图象经过点 ,则 的值为________.
- 15. 如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为( )
- 16. 如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于________.
- 17. 图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上。在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法。
- 18. 如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 ________.
- 19. Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是________.
- 20. 如图,A(4,3)是反比例函数y= 在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y= 的图象于点P.
- 21. 已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD垂足为点F,BF与AC交于点G.∠BGE=∠ADE.
- 22. 如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东30°方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西60°方向上,则点A到河岸BC的距离为________.
- 23. 如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
- 24. 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到 , 与BC,AC分别交于点D,E.设 , 的面积为 ,则 与 的函数图象大致为( )
- 25. 如图,在平面直角坐标系xOy中,函数 的图像与函数 (x<0)的图像相交于点A(﹣1,6),并与x轴交于点C.点D是线段AC上一点,△ODC与△OAC的面积比为2:3.
- 26. 如图,在△ABC中,AB=AC=5,BC=4 ,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为________.
- 27. 如图,在Rt△ABC中,∠B=90°,AB=2 ,BC= .将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=________.
- 28. 如图,在等腰 中, ,点 的坐标为 ,若直线 : 把 分成面积相等的两部分,则 的值为________.
- 29. 如图,在平面直角坐标系中,一次函数y=k1x+b的图像与反比例函数 的图像交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.
- 30. 在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.
- 31. 如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )。
- 32. 在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )。
- 33. 如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落
- 34. 如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .
- 35. 如图,二次函数 的图像与 轴交于 、 两点,与 轴交于点 , .点 在函数图像上, 轴,且 ,直线 是抛物线的对称轴, 是抛物线的顶点. 图 ①
- 36. 如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
- 37. 如图,若△ABC和△DEF的面积分别为S1、S2 , 则( )
- 38. 为了考察冰川的融化状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km的圆形考察区域,线段P1P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动,若经过n年,冰川的边界线P1P2移动的距离为s(k
- 39. 某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: ①有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;②有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(
- 40. 如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB= ,则▱ABCD面积的最大值为________.
- 41. 在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.
- 42. 如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为( )
- 43. 如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放 ,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为________ (结果保留π)
- 44. 如图,一次函数 的图象与反比例函数 的图象交于A(-1,3),B(-3,n)两点,直线 与 轴交于点C.
- 45. 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A,B,C.
- 46. 如图,在△ABC中,∠A=30°,∠B=45°,AC=2,求△ABC的周长和面积.
- 47. 如图,在平面内5×5的正方形网格中,每个小正方形的边长为1,则图中阴影部分面积为________.
- 48. 在△ABC中,CA=CB=4,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在上(如图所示)。则图中阴影部分的面积为( )
- 49. 如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC,△COB,弓形BmC的面积为S1、S2、S3 , 则它们之间的关系是( )
- 50. 如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=( )