图形的性质_三角形_全等三角形的判定与性质
- 1. 已知 ,H为射线OA上一定点, ,P为射线OB上一点,M为线段OH上一动点,连接PM,满足 为钝角,以点P为中心,将线段PM顺时针旋转 ,得到线段PN,连接ON.
- 2. 如图,在正方形 中, 是边 上的一动点(不与点 , 重合),连接 ,点 关于直线 的对称点为 ,连接 并延长交 于点 ,连接 ,过点 作 交 的延长线于点 ,连接 .
- 3. 在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.
- 4. 如图,在正方形 中, , 分别为 , 的中点, 为对角线 上的一个动点,则下列线段的长等于 最小值的是( )
- 5. 已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
- 6. 如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.
- 7. (2019·山西) 已知:如图,点B,D在线段AE上,AD=BE,AC∥EH,∠C=∠H.求证:BC=DH.
- 8. 综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:
- 9. 已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O. 求证:OE=OF.
- 10. 如图,在矩形 中, ,对角线 与 相交于点 , ,垂足为点 ,且 平分 ,则 的长为________.
- 11. 已知正方形 的面积 是为正方形一边 在从 到 方向的延长线上的一点,若 ,连接 ,与正方形另外一边 交于点 ,连接 并延长,与线段 交于点 ,则 的长为________.
- 12. (问题)如图1,在 中, ,过点 作直线 平行于 . ,点 在直线 上移动,角的一边 始终经过点 ,另一边 与 交于点 ,研究 和 的数量关系.
- 13. 如图,在正方形 中, ,点 分别在边 和 上, , ,则 的长是( )
- 14. 如图,在⊙ 中, 是⊙ 上的一点, ,弦 ,弦 平分 交 于点 ,连接 .
- 15. 如图,在圆心角为90°的扇形 中, , 为 上任意一点,过点 作 于点 ,设 为 的内心,当点 从点 运动到点 时,则内心 所经过的路径长为________.
- 16. 如图
- 17. 如图,在Rt△ABC中, ,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.
- 18. 如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM= HM;③
- 19. 如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且 = .
- 20. 如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65
- 21. 如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.
- 22. 如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
- 23. 如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN. 下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等
- 24. 如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.
- 25. 如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.
- 26. 如图,正方形ABCD的面积为3cm2 , E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.
- 27. 如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.
- 28. 如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC
- 29. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
- 30. 如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.
- 31. 如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
- 32. 如图1,在 中, , ,点M是AB的中点,连接MC,点P是线段BC延长线上一点,且 ,连接MP交AC于点H.将射线MP绕点M逆时针旋转 交线段CA的延长线于点D.
- 33. 如图,点A1 , A2 , A3…,An在x轴正半轴上,点C1 , C2 , C3 , …, 在y轴正半轴上,点B1 , B2 , B3 , …,Bn在第一象限角平分线OM上,OB1=B1B2=B1B3=…=Bn﹣1Bn= a,A1B1
- 34. 如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.
- 35. 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段F
- 36. 已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.
- 37. 如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是(
- 38. 如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE= PD;③BF﹣PD= BD;④S△PEF=S△ADP , 正确的是________
- 39. 如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.
- 40. 如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.
- 41. 如图,点 , 分别在正方形 的边 , 上,且 ,点 在射线 上(点 不与点 重合).将线段 绕点 顺时针旋转 得到线段 ,过点 作 的垂线 ,垂足为点 ,交射线 于点 .
- 42. 如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且 = ,连接GO并延长交⊙O于点F,连接BF.
- 43. 已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.
- 44. 如图,四边形ABCD是正方形,连接AC,将 绕点A逆时针旋转α得 ,连接CF,O为CF的中点,连接OE,OD.
- 45. 如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③ ﹣1;④
- 46. 在Rt△ABC中,∠ACB=90°,D是△ABC内一点,连接AD,BD.在BD左侧作Rt△BDE,使∠BDE=90°,以AD和DE为邻边作▱ADEF,连接CD,DF.
- 47. 如图1, ( )绕点 顺时针旋转得 ,射线 交射线 于点 .
- 48. 如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.
- 49. 如图,点 , 在 上, , , ,求证: .
- 50. 在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE= ,点E在△ABC的内部,连接EC,EB和BD,并且∠ACE+∠ABE=90°.