图形的性质_三角形_等边三角形的性质
- 1. 如图,在边长为4的等边 中, , 分别为 , 的中点, 于点 , 为 的中点,连接 ,则 的长为________.
- 2. 如图,等边三角形 内接于 ,若 的半径为2,则图中阴影部分的面积等于( )
- 3. 如图,在正方形 的外侧,作等边 ,则 为( )
- 4. 如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.
- 5. 如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.
- 6. 如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC
- 7. 如图, 是等边三角形,点D为BC边上一点, ,以点D为顶点作正方形DEFG,且 ,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.
- 8. 如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1 , 边OA1与AB交于点O1 , 以O1B为边作等边△O1BA2 , 边O1A2与A1B交于点O2 , 以O2B为边作等边△O2BA3 , 边O2A3
- 9. 如图, 是等边三角形,延长 到点 ,使 ,连接 .若 ,则 的长为________.
- 10. 如图所示,已知:点A(0,0),B( ,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 , 第2个△B1A2B2 , 第3个△B2A3B3 , …,则第n个等边三角形的
- 11. 如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1 , 在C1C2的延长线上取点C3 , 使D1C3=D1C1 , 连接D1C3 , 以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2 , 在C2C3的延长线上取点C4
- 12. 如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2 , 使A2B1=B1B2 , 以A2B2为边作等边△A2B2C2 , A3为等边△A2B2C2的中心,连接A3B2并延长到点B3 , 使A3B2
- 13. 如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于________.
- 14. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.
- 15. 如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三角形,点A1、A2、A3…An+1在x轴的正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点Bn的坐标为
- 16. 如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
- 17. 如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为________ .
- 18. 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为________.
- 19. 如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= ________.
- 20. 如图,直线 , 的顶点 在直线 上,边 与直线 相交于点 .若 是等边三角形, ,则 =__°
- 21. 在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是________.
- 22. 如图,已知等边△ABC的边长为8,点P事AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.
- 23. 边长为a的正三角形的面积等于________.
- 24. 已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.
- 25. 如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=________cm.
- 26. 如图,已知等边三角形OAB与反比例函数y= (k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则 的值为________.(已知sin15°= )
- 27. 折纸的思考.用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△P
- 28. 如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
- 29. 如图,一个半径为r的圆形纸片在边长为a( )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是( )
- 30. 如图,已知直线l1∥l2 , 将等边三角形如图放置,若∠α=40°,则∠β等于________.
- 31. 二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为________.
- 32. 如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是________.
- 33. 如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为________.
- 34. 如图,已知△ABC是面积为 的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于________(结果保留根号).
- 35. 如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上.OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺吋针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1 , 绕点B1按顺吋针方向旋转 120°
- 36. 等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1).
- 37. 如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E是AC的中点,连接BE并延长,交DC于点F,求证:
- 38. 如图,在等边△ABC中,点D为边BC的中点,以AD为边作等边△ADE,连接BE.求证:BE=BD.
- 39. 如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1 , △ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2 , △AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则
- 40. 已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°. 求证:BD=DE.
- 41. 如图所示,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为________.
- 42. 如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,F是CD上一点,DF=1,在对角线AC上有一点P,连接PE,PF,则PE+PF的最小值为________.
- 43. 如图,已知等边△ABC的边长为3,点E在AC上,点F在BC上,且AE=CF=1,则AP•AF的值为________.
- 44. 如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于________.
- 45. 如图,设△ABC和△CDE都是等边三角形,且∠EBD=62°,则∠AEB的度数是________.
- 46. 如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
- 47. 在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图①);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图②).如图②所
- 48. 等边三角形的边心距为 ,则该等边三角形的边长是( )
- 49. 如图△OPQ是边长为 的等边三角形,若反比例函数y= 的图像过点P. (Ⅰ)求点P的坐标和k的值;(Ⅱ)若在这个反比例函数的图像上有两个点(x1 , y1)(x2 , y2),且x1<x2<0,请比较y1与y2的大小.
- 50. 如图,有一个圆O和两个正六边形T1 , T2.T1的6个顶点都在圆周上,T1的6条边都和圆O相切(我们称T1;T2分别为圆O的外切正六边形和内接正六边形).若设T1 , T2的周长分别为a,b,圆O的半径为r,则r:a= ________ ;r:b=_