图形的性质_三角形_勾股定理
- 1. 如图所示的网格是正方形网格,则 =________°(点A,B,P是网格线交点).
- 2. 如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
- 3. 在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.
- 4. 如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
- 5. 如图,在边长为4的等边 中, , 分别为 , 的中点, 于点 , 为 的中点,连接 ,则 的长为________.
- 6. 如图,在每个小正方形的边长为1的网格中, 的顶点 , , 均在格点上.
- 7. 在平面直角坐标系中,四边形 是矩形,点 ,点 ,点 .以点 为中心,顺时针旋转矩形 ,得到矩形 ,点 , , 的对应点分别为 , , .
- 8. 如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为________.
- 9. 如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
- 10. 将一个直角三角形纸片ABO放置在平面直角坐标系中,点 ,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
- 11. 如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.
- 12. 如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧 ,使点B在O右下方,且tan∠AOB= ,在优弧 上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.
- 13. 如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
- 14. 如图,在矩形 中, ,对角线 与 相交于点 , ,垂足为点 ,且 平分 ,则 的长为________.
- 15. 腰长为5,高为4的等腰三角形的底边长为________.
- 16. 如图,在平面直角坐标系中,已知 ,将 沿直线 翻折后得到 ,若反比例函数 的图象经过点 ,则 ________.
- 17. 如图,在四边形 中, 交 于点 , ,求线段 和 的长. (注: )
- 18. 如图,在平面直角坐标系中,已知抛物线 与 轴交于 ), 两点,与 轴交于点 ,连接 .
- 19. 如图,矩形 与菱形 的对角线均交于点 ,且 ,将矩形折叠,使点 与点 重合,折痕 过点 .若 , , ,则 的长为( )
- 20. 某校组织学生到恩格贝 和康镇 进行研学活动,澄澄老师在网上查得, 和 分 别位于学校 的正北和正东方向, 位于 南偏东37°方向,校车从 出发,沿正北方向前往 地,行驶到15千米的 处时,导航显示,在 处北偏东45°方向有一服务区
- 21. 如图, 是⊙ 的直径,弦 ,垂足为 ,连接 .过 上一点 作 交 的延长线于点 ,连接 交 于点 ,且 .
- 22. 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.
- 23. 如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4 ,DC=2 .(注意:本题中的计算过程和结果均保留根号)
- 24. 如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于 AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为________.
- 25. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )
- 26. 如图,在平面直角坐标系中,已知抛物线y= x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.
- 27. 如图,正方形ABCD的面积为3cm2 , E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.
- 28. 如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.
- 29. 如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是( )
- 30. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.
- 31. 在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为________.
- 32. 在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )
- 33. 如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 ________.
- 34. 如图,在矩形ABCD中, , ,点E从点A出发,以每秒2个单位长度的速度沿AD向点D运动,同时点F从点C出发,以每秒1个单位长度的速度沿CB向点B运动,当点E到达点D时,点E,F同时停止运动.连接BE,EF,设点E运动的时间为t,若 是以BE为底的等
- 35. 如图, 是等边三角形,点D为BC边上一点, ,以点D为顶点作正方形DEFG,且 ,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.
- 36. 如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是________.
- 37. 如图,在 中, , , 是 所在平面内一点,以 , , , 为顶点的四边形是平行四边形,则 的长为__.
- 38. 如图,在矩形ABCD中对角线AC与BD相交于点O, ,垂足为点E, ,且 ,则AD的长为( )
- 39. 如图,四边形ABCD为菱形,以AD为直径作 交AB于点F,连接DB交 于点H,E是BC上的一点,且 ,连接DE.
- 40. 如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM= AD,BN= BC,E为直线BC上一动点,连接DE,将△DCE沿DE所在直线翻折得到△DC′E,当点C′恰好落在直线MN上时,CE的长为________.
- 41. 如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.
- 42. 如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是( )
- 43. 如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是________.
- 44. 如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( )
- 45. 如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为( )
- 46. 如图,直线 与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是________.
- 47. 如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF= ,则AE2+BE2的值为( )
- 48. 如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2 +4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为________.
- 49. 如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于 BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=____
- 50. 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若 ,则 =________.