- 1. 如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧 ,使点B在O右下方,且tan∠AOB= ,在优弧 上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.
- 2. 平面内,如图,在▱ABCD中,AB=10,AD=15,tanA= ,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.
- 3. 某校组织学生到恩格贝 和康镇 进行研学活动,澄澄老师在网上查得, 和 分 别位于学校 的正北和正东方向, 位于 南偏东37°方向,校车从 出发,沿正北方向前往 地,行驶到15千米的 处时,导航显示,在 处北偏东45°方向有一服务区
- 4. 如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为( )
- 5. 如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4 ,DC=2 .(注意:本题中的计算过程和结果均保留根号)
- 6. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是________.
- 7. 如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.
- 8. 如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE= ,∠EAF=135°,则下列结论正确的是( )
- 9. 已知反比例函数y= (k为常数).
- 10. 如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD= ,求sinC的值.
- 11. 如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(注意:本题中的计算过程和结果均保留根号)
- 12. 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB= , 则线段AC的长为 ________.
- 13. 如图,在平行四边形ABCD中, ,垂足为点E,以AE为直径的 与边CD相切于点F,连接BF交 于点G,连接EG.
- 14. 在平面直角坐标系中,抛物线 过点 , ,与y轴交于点C,连接AC,BC,将 沿BC所在的直线翻折,得到 ,连接OD.
- 15. 如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段 OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB.以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△A
- 16. 如图所示,已知:点A(0,0),B( ,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 , 第2个△B1A2B2 , 第3个△B2A3B3 , …,则第n个等边三角形的
- 17. 两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.
- 18. 如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.
- 19. 如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为________m(结果保留根号).
- 20. 如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
- 21. 如图,△ABC是等边三角形,AB= ,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=________.
- 22. 如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为_
- 23. 如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= x于点B1 , B2 , 过点B2作y轴的平行线交直线y=x于点A2 , 过点A2作x轴的平行线交直线y= x于点B3 , …,按照此规律进行下去,则点An的横坐
- 24. 如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.
- 25. 如图,Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E,F是⊙O上两点,连接AE,CF,DF,满足EA=CA.
- 26. 如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.
- 27. 如图,点E在以AB为直径的⊙O上,点C是 的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.
- 28. 如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.
- 29. 如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD
- 30. 如图,△ABC是⊙O的内接三角形且AB=AC,BD是⊙O的直径,过点A做AP∥BC交DB的延长线于点P,连接AD.
- 31. 如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作直线DE垂直BC于F,且交BA的延长线于点E.
- 32. 如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.
- 33. 如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧 上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.
- 34. 如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
- 35. 已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4 ,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.
- 36. 定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB
- 37. 如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.
- 38. 如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
- 39. 如图,在▱ABCD中,AD=7,AB=2 ,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为________.
- 40. 如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.
- 41. 半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为________ .
- 42. 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.
- 43. 已知:在平面直角坐标系中,点0为坐标原点,点A在x轴的负半轴上,直线 与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.
- 44. 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是( )①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△
- 45. 已知二次函数的表达式为y=x2+mx+n.
- 46. 如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC= ,反比例函数y= 的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于________.
- 47. 某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为( )
- 48. 如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
- 49. △ABC中,AB=12,AC= ,∠B=30°,则△ABC的面积是________.
- 50. 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是( ) ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG: