湖北省宜昌市东部2020届九年级上学期数学期中考试试卷

一、单选题 (湖北省宜昌市东部2020届九年级上学期数学期中考试试卷)

1. 下列方程中,是关于x的一元二次方程的是(  ).
A . ax2+bx+c=0 B . x(x-2)=0 C . D .
2. 一元二次方程 的二次项系数和一次项系数分别为(   )
A . 3,-1 B . 3,-4 C . 3,4 D .
3. 方程 的解是(  )
A . B . C . D .
4. 下列图形中,既是轴对称图形又是中心对称图形的是   
A . 图片_x0020_300782638 B . 图片_x0020_100002 C . 图片_x0020_100003 D . 图片_x0020_100004
5. 若方程x2-4x+m=0有两个相等的实数根,则m的值是(  ).
A . 4 B . -4 C . D .
6. 函数y=x2-2x+3的图象的顶点坐标是(      )

A . (1,-4) B . (-1,2) C . (1,2) D . (0,3)
7. 在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为(   )
A . B . C . D .
8. 为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为 提高到 若每年的年增长率相同,则年增长率为   
A . B . C . D .
9. 平面直角坐标系内的点A(-2,3)关于x轴对称点的坐标是(    )
A . (3,-2) B . (2,-3) C . (-3,-2) D . (-2,-3)
10. 如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为(  )

 

A . 10° B . 15°   C . 20°   D . 25°
11. 二次函数y=ax2+bx+c的图象如图所示,若点A(-2.2,y1),B(-3.2,y2)是图象上的两点,则y1与y2的大小关系是(  ).

图片_x0020_100011

A . y1<y2 B . y1=y2 C . y1>y2 D . 不能确定
12. 把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是(   )

A . y=﹣2(x﹣1)2+6 B . y=﹣2(x﹣1)2﹣6   C . y=﹣2(x+1)2+6 D . y=﹣2(x+1)2﹣6
13. 已知二次函数y=ax2+bx+c中x和y的值如下表:(     )

x

0.10

0.11

0.12

0.13

0.14

y

-5.6

-3.1

-1.5

0.9

1.8

则ax2+bx+c=0的一个根的范围是(  )

A . 0.10<x<0.11 B . 0.11<x<0.12 C . 0.12<x<0.13 D . 0.13<x<0.14
14. 如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(   )

A . ①②④ B . ①②⑤ C . ②③④ D . ③④⑤
15. 设一元二次方程 的两个实数根为x1 , x2 , 则x1+x1x2+x2等于(  ).
A . 1 B . -1 C . 0 D . 3

二、解答题 (湖北省宜昌市东部2020届九年级上学期数学期中考试试卷)

16. 解方程
(1) x2+x-12=0
(2) x2-3x+2=0
17. 如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1),(2,1),将△BOC绕点O逆时针旋转90度,得到△B1OC1画出△B1OC1并写出B、C两点的对应点B1C1的坐标,

图片_x0020_100014

18. 已知关于x的一元二次方程x2+(2m+1)x+m2−2=0.
(1) 若该方程有两个实数根,求m的最小整数值;
(2) 若方程的两个实数根为x1,x2,且(x1−x2)2+m2=21,求m的值.
19. 空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图,求所利用旧墙AD的长;

图片_x0020_100016

20. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按照顺时针方向旋转m度后得到△DEC,点D刚好落在AB边上,求m的值.

图片_x0020_100017

21. 某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.

图片_x0020_100018

(1) 以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;
(2) 某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由
22. 某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1) 求出y与x的函数关系式;
(2) 当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3) 设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
23. 某超市为微波炉生产厂代销A型微波炉,售价是每台700元,每台可获利润40%.
(1) 超市销售一台A型微波炉可获利多少元?
(2) 2019年元旦,超市决定降价销售该微波炉,已知若按原价销售,每天可销售10台,若每台每降价5元,每天可多销1台,同时超市和微波炉生产厂协商,使现有微波炉的成本价,每台减少20元,但生产厂商要求超市尽量增加销售,这样,2019元旦当天超市销售A型微波炉共获利3600元,求超市在元旦当天销售A型微波炉的价格.
24. 如图,抛物线y=(x−1)2+n与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,−3),点D与C关于抛物线的对称轴对称.

图片_x0020_100020

(1) 求抛物线的解析式及点D的坐标;
(2) 点P是抛物线上的一点,当△ABP的面积是8,求出点P的坐标;
(3) 过直线AD下方的抛物线上一点M作y轴的平行线,与直线AD交于点N,已知M点的横坐标是m,试用含m的式子表示MN的长及△ADM的面积S,并求当MN的长最大时s的值.

参考答案(湖北省宜昌市东部2020届九年级上学期数学期中考试试卷)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.