如右图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD, △ABD绕点A旋转后得到△ACE,则CE的长度为________。
——来源于“广东省韶关市乐昌县2019-2020学年九年级上学期数学期中考试试卷”真题答案
【真题】 (2020韶关.九上期中) 如右图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD, △ABD绕点A旋转后得到△ACE,则CE的长度为________。
【答案】


考点分析
据专家权威分析,该题主要考察了你对 等边三角形的判定与性质; 旋转的性质; 等知识点的理解和应用。举一反三
~~第1题~~ (2020哈尔滨.中考模拟) 如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,点A落在A'位置,若AC⊥A'B',则∠BAC的度数是( )
A . 50° B . 60° C . 70° D . 80°
~~第2题~~ (2020西湖.中考模拟) 如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.
(1) 求证:△CDE是等边三角形;
(2) 如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3) 如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
~~第3题~~ (2020西湖.中考模拟) 如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.
(1) 求证:△CDE是等边三角形;
(2) 如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3) 如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
~~第4题~~ (2020宽城.中考模拟) 如图,在平面直角坐标系中,直线y=-2x+4交x轴、y轴于A、B两点,将线段AB绕着点B逆时针方向旋转90°,点A落在点A'处,则点A'的坐标为________。
~~第5题~~
(2020通榆.中考模拟) 如图,已知∠OBA=20°,且OC=AC,则∠BOC的度数是( )
A . 40° B . 60° C . 70° D . 80°
巩固练习
与该题相似的试题还有:- 如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1 .
- 如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值________
- 如图,在平面直角坐标系xOy中,直线 经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为________.
- 如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点
- 在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.